初一上旋轉知識點總結:
一、概念
1、定義
把一個圖形繞某一點O轉動一個角度的圖形變換叫做旋轉,其中O叫做旋轉中心,轉動的角叫做旋轉角。
2、性質
(1)對應點到旋轉中心的距離相等。
(2)對應點與旋轉中心所連線段的夾角等于旋轉角。
二、中心對稱
1、定義
把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。
2、性質
(1)關于中心對稱的兩個圖形是全等形。
(2)關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分。
(3)關于中心對稱的兩個圖形,對應線段平行(或在同一直線上)且相等。
3、判定
如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱。
4、中心對稱圖形
把一個圖形繞某一個點旋轉180°,如果旋轉后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個店就是它的對稱中心。
1、關于原點對稱的點的特征
兩個點關于原點對稱時,它們的坐標的符號相反,即點P(x,y)關于原點的對稱點為P’(-x,-y)
2、關于x軸對稱的點的特征
兩個點關于x軸對稱時,它們的坐標中,x相等,y的符號相反,即點P(x,y)關于x軸的對稱點為P’(x,-y)
3、關于y軸對稱的點的特征
兩個點關于y軸對稱時,它們的坐標中,y相等,x的符號相反,即點P(x,y)關于y軸的對稱點為P’(-x,y)
三、類型
1.旋轉:在平面內,將一個圖形繞一個圖形按某個方向轉動一個角度,這樣的運動叫做圖形的旋轉。這個定點叫做旋轉中心,轉動的角度叫做旋轉角。(圖形的旋轉是圖形上的每一點在平面上繞著某個固定點旋轉固定角度的位置移動,其中對應點到旋轉中心的距離相等,對應線段的長度、對應角的大小相等,旋轉前后圖形的大小和形狀沒有改變。)
2.旋轉對稱中心:把一個圖形繞著一個定點旋轉一個角度后,與初始圖形重合,這種圖形叫做旋轉對稱圖形,這個定點叫做旋轉對稱中心,旋轉的角度叫做旋轉角(旋轉角小于0°,大于360°)。
3.中心對稱圖形與中心對稱:
中心對稱圖形:如果把一個圖形繞著某一點旋轉180度后能與自身重合,那么我們就說,這個圖形成中心對稱圖形。
中心對稱:如果把一個圖形繞著某一點旋轉180度后能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱。
4.中心對稱的性質:
關于中心對稱的兩個圖形是全等形。
關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分。
關于中心對稱的兩個圖形,對應線段平行(或者在同一直線上)且相等。